Find dy/dx of the functions
Y=x/x+1 find dy/dx- Ex 96, 3 For each of the differential equation given in Exercises 1 to 12, find the general solution = 2 = 2 Differential equation is of the form = where P = 1 and Q = x2 Finding integrating factor, IF = e IF = e Suppose that, y=x^(x^x) lny=(x^x)lnx ln(lny)=ln{(x^x)lnx}=ln(x^x)ln(lnx), ie, ln(lny)=xlnxln(lnx) Diffing both sides wrt x, d/dx{ln(lny)}=d/dx{xlnxln(lnx)}(star) Here, by the Chain Rule, d/dx{ln(lny)}=1/lny*d/dx{lny}=1/lny*d/dy{lny}*dy/dx ;
Y=x/x+1 find dy/dxのギャラリー
各画像をクリックすると、ダウンロードまたは拡大表示できます
![]() | ||
![]() | ![]() | |
![]() | ![]() | |
![]() | ![]() | ![]() |
0 件のコメント:
コメントを投稿